- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Kong, Ru (2)
-
Anderson, Kevin M. (1)
-
Betzel, Richard F (1)
-
Cohen, Jessica R (1)
-
Damoiseaux, Jessica S (1)
-
De_Brigard, Felipe (1)
-
Eickhoff, Simon B (1)
-
Fornito, Alex (1)
-
Ge, Tian (1)
-
Gordon, Evan M (1)
-
Gratton, Caterina (1)
-
Holmes, Avram J (1)
-
Holmes, Avram J. (1)
-
Laird, Angela R (1)
-
Larson-Prior, Linda (1)
-
Nickerson, Lisa D (1)
-
Patrick, Lauren M. (1)
-
Pinho, Ana Luísa (1)
-
Razi, Adeel (1)
-
Sabuncu, Mert R. (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The brain can be decomposed into large-scale functional networks, but the specific spatial topographies of these networks and the names used to describe them vary across studies. Such discordance has hampered interpretation and convergence of research findings across the field. We have developed theNetwork Correspondence Toolbox(NCT) to permit researchers to examine and report spatial correspondence between their novel neuroimaging results and multiple widely used functional brain atlases. We provide several exemplar demonstrations to illustrate how researchers can use the NCT to report their own findings. The NCT provides a convenient means for computing Dice coefficients with spin test permutations to determine the magnitude and statistical significance of correspondence among user-defined maps and existing atlas labels. The adoption of the NCT will make it easier for network neuroscience researchers to report their findings in a standardized manner, thus aiding reproducibility and facilitating comparisons between studies to produce interdisciplinary insights.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Anderson, Kevin M.; Ge, Tian; Kong, Ru; Patrick, Lauren M.; Spreng, R. Nathan; Sabuncu, Mert R.; Yeo, B. T.; Holmes, Avram J. (, Proceedings of the National Academy of Sciences)null (Ed.)Human cortex is patterned by a complex and interdigitated web of large-scale functional networks. Recent methodological breakthroughs reveal variation in the size, shape, and spatial topography of cortical networks across individuals. While spatial network organization emerges across development, is stable over time, and is predictive of behavior, it is not yet clear to what extent genetic factors underlie interindividual differences in network topography. Here, leveraging a nonlinear multidimensional estimation of heritability, we provide evidence that individual variability in the size and topographic organization of cortical networks are under genetic control. Using twin and family data from the Human Connectome Project ( n = 1,023), we find increased variability and reduced heritability in the size of heteromodal association networks ( h 2 : M = 0.34, SD = 0.070), relative to unimodal sensory/motor cortex ( h 2 : M = 0.40, SD = 0.097). We then demonstrate that the spatial layout of cortical networks is influenced by genetics, using our multidimensional estimation of heritability ( h 2 - multi; M = 0.14, SD = 0.015). However, topographic heritability did not differ between heteromodal and unimodal networks. Genetic factors had a regionally variable influence on brain organization, such that the heritability of network topography was greatest in prefrontal, precuneus, and posterior parietal cortex. Taken together, these data are consistent with relaxed genetic control of association cortices relative to primary sensory/motor regions and have implications for understanding population-level variability in brain functioning, guiding both individualized prediction and the interpretation of analyses that integrate genetics and neuroimaging.more » « less
An official website of the United States government
